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Explicit Form of the Time Operator of a Gaussian
Stationary Process

Z. Suchanecki1,2

We present the time operator theory in the framework of stationary stochastic processes.
The main results of the paper is the derivation of the time operator acting on the Fock
space associated with a discrete time gaussian stationary process.
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1. INTRODUCTION

Let {Vt }t∈I , ⊂ R, be a semigroup of isometries on a Hilbert space H. if T is
a selfadjoint operator on H such that each Vt preserves the domain of T and

T Vt = Vt T + tVt (1)

on a dense subspace of H, then T is called the time operator of {Vt }.
The semigroup {Vt } may describe the time evolution of some physical system,

in particular, a dynamical system. If such time evolution is reversible, then {Vt } is
a group of unitary operators.

Time operators in dynamical systems were introduced by Misra (1978) and
Prigogine (1980) for the study of irreversible behavior of highly unstable reversible
dynamics. It turns out, however, that time operators can also used as a new tool
for the spectral analysis of various evolution semigroups.

A crucial step in the spectral analysis of an evolution semigroup {Vt } on a
Hilbert space H with the use of its time operator T is to find the spectral family
{Et } of T which is, according to (1), related with {Vt } by the relation

Es+t Vt = Vt Es
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In the case of discrete time, I ⊂ Z, the task is to find the representation

T =
∑

n

n
∑

k

|ϕn,k〉〈ϕn,k |

where {ϕn,k} is a complete family of eigenvectors of T , T ϕn,k = nϕn,k , and Vt is the
shift Vtϕn,k = ϕn+t ,k · In the latter case the action of Vt on an element h ∈ H, h =∑

n,k an,kϕn,k , is nothing but a shift of its representation, Vt h = ∑
n,k an,kϕn+t ,k =∑

n,k an−t ,kϕn,k · The knowledge of the eigenvectors of T allows therefore to solve
the prediction problem for the evolution semigroup {Vt }. The spaces Nn spanned
by the eigenvectors ϕn,α are called the age eigenspaces or the spaces of innovations
at time n, as they correspond to the new information, or detail, brought at time n
(see Suchanecki and Antoniou, 2003, for more details).

The time operator method of spectral analysis can be obviously applied only
for those evolution semigroups for which time operators exist and can be explicitly
constructed. A serious obstacle is that the class of semigroups that admit time
opeators is relatively narrow. Even if a time operator exists its explicit construction
is in general a nontrivial task.

Time operators have been initially constructed for some evolution semigroups
arising from dynamical systems. Namely, for those which have the strongest er-
godic properties: Kolmogorov and exact systems (Misra et al., 1979; Suchanecki
and Weron, 1990; Suchanecki, 1992; Antoniou and Suchanecki, 2000; Antoniou
et al., 1999). Then time operators have been associated with other semigroups like
the diffusion semigroup (Antoniou et al., 2000), with approximations (Suchanecki
and Antoniou, 2003), with wavelets (Antoniou and Gustafson, 2000; Antoniou
and Suchanecki, 2000), and with Markov semigroups (Antoniou and Suchanecki,
2003a). Some connections of time operators with wide sense stationary processes
have also been discussed (Antoniou and Gustafson, 1999).

In this article, we shall focus our attention on semigroups that arise from sta-
tionary stochastic processes. the main reason of considering stationary processes
is that they can be described in terms of groups of shift operators. This property
is necessary to link time operators with stochastic processes, although not suffi-
cient. An additional assumption that the process is innovative (or an innovation
stochastic process) must be added (Antoniou and Suchanecki, 2003b). An exam-
ple of a discrete time innovation process is a sequence of independent, identically
distributed random variables. Innovative are also completely nondeterministic sta-
tionary processes, in particular, gaussian stationary processes. The construction of
time operators associated with the latter processes is the main purpose of this paper.

The plan of the paper is the following. In Section 2, we remaind some basic
concepts and links between stationary processes and classical dynamical systems.
Then, we present a simple time operator theory for the processes that are stationary
in the wide sense. In Section 3, we study the time operator associted with a dis-
crete time gaussian stationary process. This stronger assumption allows to expand
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significantly the domain of the time operator and to drive the explicit form of its
eigenprojectors. The time operator is defined on a dense subspace of the Fock
space determined by the gaussian process.

2. TIME OPERATORS OF PROCESSES STATIONARY
IN THE WIDE SENSE

We begin this section with a brief reminder of basic concepts and notions
from the theory of stochastic processes. The reader will find more details in Doob
(1953) and Lamperti (1977).

Let (�, F , P) be a probability space, I an index set, and {Xt }t∈I a real or
complex valued stochastic process on (�, F , P). The index set I is assumed to be
either the set of integers or real numbers.

A family {Ft }t∈I of sub-σ -algebras of F is called to be adapted to the process
{Xt }t∈I (shortly, {Ft }t∈I is {Xt }t∈I adapted) if every random variable Xt is Ft

measurable. A family {Ft }t∈I is called a filtration of the process {Xt }t∈I if:

(1) Fs ⊂ Ft , for each s < t ,
(2) {Xt } is {Ft } adapted.

In particular, {Ft }t∈I is called the natural filtration of the process {Xt }t∈I if each
Ft is defined as the smallest σ -algebra generated by all random variables Xs , for
s ≤ t .

As filtration {Ft }t∈I can be associated with the family of conditional expec-
tations {Et }

Et
df= E(· |Ft ), t ∈ I

acting on the Hilbert space L2(�, F , P).
A stochastic process {Xt } is said to be strictly stationary or stationary in a

narrow sense if all finite dimensional distributions of the process {Xt } are time
invariant, i.e.,

P
{

Xt1+s ∈ B1, . . . , Xtn+s ∈ Bn
} = P

{
Xt1 ∈ B1, . . . , Xt ∈ Bn

}
for each s, t1, . . . , tn ∈ I , n ∈ N, and B1, . . . , Bn are Borel subsets of R(C).

A process {Xt } is said to be stationary in the wide sense if it is a second-order
process (E |Xt |2 < ∞, for each t), the mean value of Xt is constant

E Xt = m

(in the sequel we shall always assume that m = 0) and the covariance function

R(s, t)
df= E Xs X̄ t − |m|2
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depends only on the difference between s and t

R(s + u, t + u) = R(s, t)

for each s, t , u ∈ R.
Note that in the class of L2-stochastic processes each strictly stationary pro-

cess is also stationary in the wide sense. Strictly stationary stochastic processes may
arise from dynamical systems with measure-preserving transformations. Indeed,
let us consider a dynamical system (X , �, µ; {St }), where µ is a normalized mea-
sure and each transformation St is measure-preserving, i.e., µ(S−1

t A) = µ(A),
for each A ∈ �. Then define the probability space (�, F , P) by putting � = X ,
F = �, and P = µ, and the stochastic process

Xt (ω)
df= f (St x) (2)

where f is some real (or complex) valued measurable function on X . We have

P
{
ω ∈ � : Xt1+s(ω) ∈ A1, . . . , Xtn+s(ω) ∈ An

}
= µ

(
S−1

t1+s f −1(A1) ∩ · · · ∩ S−1
tn+s f −1(An)

)
= µ

(
S−1

t1 f −1(A1) ∩ · · · ∩ S−1
tn f −1(An)

)
= P

{
ω ∈ � : Xt1 (ω) ∈ A1, . . . , Xtn (ω) ∈ An

}
for any choice t1, . . . , tn , s ∈ I and Borel sets A1, . . . , An . This shows that {Xt }
is strictly stationary on I . Choosing as f a square integrable function, we obtain
a stochastic process that is stationary both in the strict and in the narrow sense.

Since each measurable function f on the phase space � defines a different
strictly stationary process, one may say that the dynamical systems with measure-
preserving transformations have a more complex structure than strictly stationary
stochastic processes. However, it is not true that for an arbitrary strictly stationary
process {Xt } on the probability space (�, F , P) there exists a family {St } of
measure-preserving transformation such that (2) holds (see Lamperti, 1977 for the
discussion on this subject).

Let us consider first an arbitrary real or complex valued process {Xt }t∈I on a
probability space (�, F , P). Let the set I of indices, interpreted here as time, be
either the real line R or the set of intergers Z. Let {Ft }t∈I be the natural filtration
determined by the process {Xt }t∈I . We assume in addition that the σ -algebra
generated by all Xt coincides with F .

The conditional expectations Et , regarded as operators on the Hilbert spce
L2, are orthogonal projectors. If the family {Et } is a resolution of identity then we
can define the self-adjoint operator T

T f =
∫

I
td Et f (3)

which is densely defined on L2.
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It is known thast formula (3) defines a time operator in the case when {Ft }
is a nested family of an K-system or an exact system. One may therefore ask
whether T is defined by (3) is also a time operator of the stochastic process {Xt }.
This question acquires meaning if T can be related through (1) to some semigroup
of operators that reflects the dynamics (or the flow of time) consistent witht he
filtration determined by {Xt }. However, an arbitratary stochastic process does
not determine any specific dynamics that could be expressed by a semigroup of
operators. Only, if the process {Xt }t∈I is stationary (in the wide sense), we can
proceed as follows.

Let H(X ) denote the closed subspace of L2 spanned by the linear
combinations of Xt , t ∈ I . H(X ) is also a Hilbert space (in general, a proper
subspace of L2). On the space H(X ) we can define the shift operator

Vt Xs
df= Xs+t

extending it by linearity on finite linear combinations of Xt1 , . . . , Xtn . The operator
Vt preserves the L2-norm

∥∥∥∥∥Vt

(
n∑

j=1

a j Xt j

)∥∥∥∥∥
2

=
∥∥∥∥∥

n∑
j=1

a j Xt j +t

∥∥∥∥∥
2

=
n∑

j,k=1

a j āk E Xt j +t X̄ tk+t

=
n∑

j,k=1

a j āk E Xt j X̄ tk =
∥∥∥∥∥

n∑
j=1

a j Xt j

∥∥∥∥∥
2

In consequence, each Vt extends to an unitary operator on H (X ). In this way,
we define the dynamics associated with the stationary process {Xt } as the unitary
group {Vt }.

Let Ht (X ) be the closed subspace of L2 spanned by the linear combinations
of Xs , s ∈ I , s ≤ t . In fact Ht (X ) is a subspace of L2(Ft ). Note that, for each t ,
the conditional expectation Et is the orthogonal projection from H (X ) onto Ht

(X ). Recall that the process {Xt } (E Xt = 0, for each t) is purely nondeterministic
if ⋂

t∈I

Ht (X ) = {0}

Proposition 1. If the process {Xt } is stationary in the wide sense and purely
nondeterministic then the operator T associated with {Xt } through (3) is a time
operator with respect to {Vt }.

In the proof of this proposition, and also in the sequel, we shall use the
following simple property of Hilbert spaces:



1102 Suchanecki

Lemma 1. Let H0 be a closed subspace of the Hilbert space H. If x0 ∈ H0 and
x ∈ H, then

x − x0 ⊥ H0 ⇐⇒ x0 = P0x

where P0 is the orthogonal projector on H0.

Proof of the Proposition 1: By the assumption that {Xt } is purely nondetermin-
istic the family {Et } is a resolution of identity in the Hilbert space L2 as well as
in its subspace H (X ). Thus, equality (3) defines a selfadjoint operator on a dense
subspace of both H (X ) and L2. To see that T and {Vt } satisfy

T Vt = Vt T + tVt (4)

we need the equality

Vt Es = Es+t Vt (5)

Let Y be an arbitrary element from H (X ). Then EsY ∈ Hs (X ) and Vt EsY ∈
Hs+t (X ). By Lemma 1, Y − EsY ⊥ Hs (X ). Since Vt maps Hs onto Hs+t , we
also have Vt (Y − EsY ) ⊥ Hs+t (X ). Thus

Vt Y − Vt EsY ⊥ Hs+t (X )

and applying the lemma again we obtain

Vt EsY = Es+t Vt Y

which proves (5). Now, to prove (4) it is enough to use representation (3) of T and
apply (5). �

Purely nondeterministic stationary processes correspond to K-systems or ex-
act systems, i.e., to the dynamical systems for which time operators have been
already constructed (Misra et al., 1979; Suchanecki and Weron, 1990; Antoniou
and Suchanecki, 2000; Antoniou et al., 1999). If {Xt } is not purely nondetermin-
istic then it follows from the Wold decomposition theorem that {X (t)} can be
represented uniquely as

X (t) = X1(t) + X2(t)

where the process {X1(t)} is purely nondeterministic and {X2(t)} is deterministic,
i.e., Ht (X2) = H(X2), for all t . Moreover {X1(t)} and {X2(t)} are L2-orthogonal.
Since the deterministic process is measurable with respect to the σ -algebra ∩tFt , it
is not affected by the transition Fs → Ft , for s < t . Thus, we can say that there is
no flow of time for a deterministic process. Consequently, the time operator must
be identity on the space H(X2), which is the orthogonal complement of H(X1).

Let us now consider a discrete time stationary process, i.e., an L2-stationary
sequence {Xn}n∈Z, which is purely nondeterministic. We can characterize the
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time operator associated with {Xn} in terms of its eigenvalues and eigenspaces as
follows:

Proposition 2. Let X = {Xn}n∈Z be a purely nondeterministic stationary se-
quence. Then there is an orthonormal basis {Yn} in the Hilbert space H(X ) such
that the time operator T associated with the process {Xn} has the form

T =
∑
n∈Z

n Pn (6)

where Pn denotes the projection on the space spanned by Yn.

Proof: The process {Xn} can be represented in the form

Xn =
n∑

k=−∞
an−kYk , n ∈ Z (7)

where Yk ∈ L2, k ∈ Z, is a sequence of random variables that are mutually or-
thonormal,

∑∞
k=0 |ak |2 < ∞, and Hn(X ) = Hn(Y) (see [15]). This implies that

each En coincides with the orthogonal projection onto Hn(Y ).

Let Pn
df= En − En−1. Since En is the orthogonal projection on Hn(Y ), Pn is

the orthogonal projection on the spaceHn(Y ) � Hn−1(Y ), which is, by the assump-
tion that {Xn} is purely nondeterministic, one dimensional space generated by Yn .
Time operator (3) associated with {Xn} can be equivalently represented by (6). �

The process {Yn} from the above proposition is called the spectral process
or the white noise. If the random variables Yn are independent then we can say
that {Yn} is the innovation process of {Xn} (Antoniou and Suchanecki, 2003) (see
also (Hida, 1997; Accardi et al., 2002). Thus, the above theorem connects the time
operator with the spectral (or innovation) process.

Using Theorem 1 we may connect time operators with all those processes
that can be derived from the spectral (or innovation) processes as their linear func-
tionals. This connection between time operators and innovation processes allows a
new interpretation of the operation of time scaling in classical dynamical systems.

Time scalings have been widely used in the Misra–Prigogine–Courbage theory
of irreversibility, which explains irreversible behaviour of highly unstable, although
reversible, dynamical systems. We would like to present now the stochastic inter-
pretation of the time scaling 
(T ) of the just constructed time operator T .

First, let us note that for any Z ∈ H(X ) the value 〈Z , T Z〉 can be interpreted
as the average age of Z . It follows from the spectral resolution

T =
∑
n∈Z

n Pn (8)
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that T attributes the age n to the random variable Yn . Since {Yn} form a complete or-
thonormal system in the Hilbert spaceH(X ), each Z ∈ H(X ) can be represented as

Z =
∑
n∈Z

bnYn (9)

where
∑

n |bn|2 < ∞. Consequently each element of H(X ) can be decomposed
in terms of eigenvectors of T . Moreover, the domain of T consists of all Z of the
form (9) for which

∑
n |bn|2 < ∞. We can then say that each Z from the domain

of T has well definite age, which is

〈Z , T Z〉 =
∑

n

n|bn|2

Now, if


 = 
(T ) =
∑
n∈Z

λn Pn (10)

is a function of the time operator, then 
 attributes the age λn to Yn .
It is interesting to interpret 
-operator in terms of filtering theory. From this

point of view the sequence {Yk} is a noise and Xn is the response of a linear
homogenous physically realizable system at instant n to the sequence of impulses
{Yk}. According to this interpretation at every time instant n there is the same
contribution of noise. 
-operator changes the magnitude of impulses of the noise.
As a result the system becomes inhomogenous with respect to time although still
physically realizable.

3. TIME OPERATORS OF STRICTLY STATIONARY
PROCESSES—FOCK SPACE

There is a profound difference between the above introduced time operators
associated with wide-sense stationary processes and the time operators associated
with K-systems. Although T , defined in Section 2, keeps step with the evolution
semigroup {Vt } the time eigensubspaces are one-dimensional. This is in a sharp
contrast with the properties of the time operator that was originally introduced
by Misra and Prigogine, which has the eigenfunctions of infinite multiplicity.
However, let us notice that formula (3) actually defines T on the whole space
L2(F)

df= L2(ω, F , P), where F is the σ -algebra generated by all Xt , t ∈ I . We
show below that for some classes of strictly stationary processes there is an ex-
tension of the evolution {Vt } from H(X ) to the unitary evolution on L2(F) such
that T is a strict analog of the Misra–Prigogine time operator with respect to
this extended group. Namely, that the extended unitary group {Vt } is such that
L2(F0) ⊂ Vt L2(F0), for t > 0, where F0 = σ (Xt )t<0, and has a homogeneous
Lebesgue spectrum of infinite multiplicity.
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Let us now assume that the stochastic process under consideration is a Gaus-
sian stationary sequence {Xn}n∈Z with E Xn = 0, for each n ∈ Z. In this case {Xn}
is stationary in both strict and narrow sense and the Hilbert space H(X ) is the
space of Gaussian random variables.

The shifts V m , V m Xn = Xn+m , can be extended from H(X ) on all functions
f (Xn1 , . . . , Xnk ) of finite subsequences of {Xn} by putting

V m f
(
Xn1 , . . . , Xnk

) = f
(
Xn1+m , . . . , Xnk+m

)
(11)

It is easy to see that extended V m is also an isometry on functions of the form
f (Xn1 , . . . , Xnk ). Since such functions generate L2(F), V m extends to an isometry
on the whole L2(F).

Denote byFn the σ -algebra generated by Xk , k ≤ n, and by En the orthogonal
projection (conditional expectation) from L2(F) onto L2(Fn). We shall show below
that operator T

T =
∑
n∈Z

n(En − En−1) (12)

which a discrete analog of (3), is a time operator associated with the extended
unitary group V m on L2(F)� (Misra, 1978)—the orthogonal complement of con-
stants in L2(F).

Let us note that the Hilbert space of square integrable functions f (X ) of a
Gaussian random variable X can be identified with L2(R, BR, γ ), where BR is
the Borel σ -algebra on R and γ is the Gaussian measure on R with the density
(2π )−1/2e−x2/2. Since L2(F) actually consists of all functions of the form f (X1,
X2, . . .) (see Dynkin, 1961, Lemma 1.5), it can be identified with the infinite
product space L2(R∞, B∞

R
, γ∞), where γ∞ is the corresponding product Gaussian

measure on R
∞. This identification will allow to express spectral projectors of T

in terms of the Wick polynomials.
In the sequel we use the following:

Lemma 2. (Kakutani, 1961; Major, 1981). If {Yk} is an orthonormal basis in
H(X) then the family of all products

Hl1

(
Y j1

) · · · Hlr

(
Y jr

)
, (13)

where Hn(x) denotes the nth Hermite polyomial with the leading coefficient 1,
form a complete orthogonal system in L2(F).

Recall that the nth Hermite polynomial with the leading coefficient 1 is

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2
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In particular H0 ≡ 1, H1(x) = x , H2(x) = x2 − 1, H3(x) = x3 − 3x , . . . Recall
also that Hn(x), n = 0, 1, . . . , form a complete orthogonal basis in L2(R, BR, γ ).
In fact, each f ∈ L2(R, BR, γ ) can be represented in the form

f (x) =
∞∑

n=0

an

n!
Hn(x) (14)

where an = 〈 f, Hn〉.
Let {Yn}n∈Z be the innovation process corresponding to {Xn}n∈Z, i.e., a family

of independent N (0, 1) random variables such that

Xn =
n∑

k=−∞
an−kYk , n ∈ Z (15)

Consider the Hilbert space L2(Fn). It is easy to see that the σ -algebra Fn coincides
with the smallest σ -algebra generated by Yk , k ≤ n. Moreover the above lemma
implies that products (13) with jk ≤ n form a complete orthogonal system in
L2(Fn). Next, denote by H≤k(n) the Hilbert space spanned by all polynomials

p
(
Y j1 , . . . , Y jr

) =
∑

l1,...,lr

al1,...,lr Y l1
j1

· · · Y lr
jr

(16)

of random variables Y j with r = 1, 2, . . . , j1, . . . , jr ≤ n and l1, . . . , lr non-
negative integers with l1 + · · · + lr ≤ k. Let H0(n) denote the space of constants
and letHk(n) be the orthogonal complement ofH≤k−1(n) inH≤k(n), i.e.,H≤k−1(n)
⊕ Hk(n) = H≤k(n). Therefore

L2(Fn) =
∞⊕

k=0

Hk(n).

Theorem 1. Suppose that {Xn}n∈Z is a Gaussian stationary sequence on the
probability space (�, F , P) and {Yn}n∈Z its innovation process (15). Assume that
F coincides with the smallest σ -algebra generated by all Xn , n ∈ Z. Then operator
T considered on L2(F) � [1]:

T =
∑
n∈Z

n(En − En−1)

is a time operator of the group of shifts {V m} defined by (11) and its projections
En are of the form

En =
∞∑

k=1

Pn(k)

where Pn(k), k = 1, . . . , is the orthogonal projecton on the space Hk(n). In par-
ticular, for any finite subsequence Y j1 , . . . , Y jr , jr ≤ n, and any homogeneous
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polynomial of order k

p
(
Y j1 , . . . , Y jr

) =
∑

l1,...,lr

al1,...,lr Y l1
j1

, . . . , Y lr
jr

the orthogonal projecton Pn(k) of p(Y j1 , . . . , Y jr ) is of the form

Pn(k)
(

p
(
Y j1 · · · Y jr

)) =
∑

l1,...,lr

al1,...lr Hl1

(
Y j1

)
, . . . , Hlr

(
Y jr

)
where the summation is over all nonnegative integers l1 + · · · + lr = k.

Proof: It follows from Lemma 2 (see also Kakutani, 1961; Major, 1981) that the
orthogonal projection Pn(k) of the polynomial (16) of order k onto Hk(n) is the
Wick polynomial

Pn(k)
(

p
(
Y j1 , . . . , Y jr

)) =
∑

l1,...,lr

al1,...,lr Hl1

(
Y j1

)
, . . . , Hlr

(
Y jr

)
(17)

Since Hl1 (Y j1 ), . . . , Hlr (Y jr ) form a complete orthonormal system in L2(Fn) and
∪n∈ZL2(Fn) = L2(F), the explicit form of the spectral projectors of the time op-
erator T is known on a dense subspace of L2(F).

In order to show that T is the time operator with respect to the extended shift
V on L2(F) � (Misra, 1978) note first that

V m L2(Fn) = L2(Fn+m) (18)

Indeed, because L2(Fn) is the closure of the space spanned by all Hl1 (Y j1 ), . . . , Hlr
(Y jr ), with j1, . . . , jr ≤ n, it follows from (11) that

V m
(
Hl1

(
Y j1

)
, . . . , Hlr

(
Y jr

)) = Hl1

(
Y j1+m

)
, . . . , Hlr

(
Y jr +m

)
Since the right-hand sides of the latter equality spans L2(Fn+m), this concludes
the proof of (18).

Finally, arguing in the same way as in the proof of Proposition 1 we show
that T is a time operator of the group of shifts {Vm}. This concludes the proof of
the theorem. �

Remark 1. The space L2(F) can be also decomposed as a direct sum

L2(F) =
∞⊕

k=0

Hk

in the same manner as the spaces L2(Fm). It follows from Proposition 2 and (14)
that each f ∈ Hk is of the form .

f =
∑

al1,...,lr Hl1

(
Y j1

)
, . . . , Hlr

(
Y jr

)
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where r = 1, 2, . . . , j1, . . . , jr ∈ Z, and l1, . . . , lr are positive integers with l1 +
· · · + lr = k. The norm of f in L2(F) is

‖ f ‖2 =
∑ ∣∣al1,...,lr

∣∣2 1

l1!..lr !

Note also that each spaceHk is invariant with respect to the group {V m} of extended
shifts

‖V m f ‖2 =
∑

al1,...,lr Hl1

(
Y j1+m

)
, . . . , Hlr

(
Y jr +m

)
Remark 2. In the case of a continuous time stationary process the representation
of the corresponding time operator in terms of its eigenvalues and eigenprojec-
tors is more eleborated. In order to obtain a direct analog of (7) the spectral (or
innovative process) {Yn} has to be replaced by a generalized stochastic process
understand as a family of linear functionals on a topological vector space (Hida
and Ikeda, 1967; Hida, 1970). An analog of Theorem 1 can be obtained by con-
sidering representations of eigenprojectors in terms of a (generalized) innovation
process. This approach requires, however, the introduction of new tools and will
be presented in a separate publication (Antoniou et al., in press).
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